Fast, Efficient and Scalable Solutions

DaniGuruji .Com

NCERT Mathematics Solutions for class 9 Chapter 1 NUMBER SYSTEMS Ex. 1.5

Explore the comprehensive NCERT Textbook Solutions for Class IX.

KEY Concept For Chpt. 1.5 Laws of Exponents for Real Numbers

Exponent

Exponents means power



Laws of Exponents:

If we have 'a' and 'b' as the base and 'm' and 'n' as the exponents, then.


(i) $ { \sqrt a } = a^{ 1 \over 2}$

Example : $ { \sqrt 7 }= 7^{ 1 \over 2}$


(ii) $ { \sqrt[n]{a} } = a^{ 1 \over n}$

Example : $ {\sqrt[3]{7} } = 7^{ 1 \over 3} $


(iii) $ {a^m × a^n } = a^{m + n}$

Example : $ {2^3 × 2^4 }= 2^{3 + 4} = 2^7 $


(iv) $ {a^m \over { a^n} } = a^{m - n}$

Example : $ {3^5 \over { 3^2} }= 3^{5 - 2} = 3^3 $


(v) $ {(a^m )^n } = a^{m × n}$

Example : $ {(2^4 )^2 } =( 2^{4 × 2}) = 2^8 $


(vi) $ {a^m × b^m } = {(ab)^m} $

Example : $ {3^2 × 5^2 } = {(3×5)^2} = 15^2 $


(vii) $ {a^0 } = 1 $

Example : $ {7^0 } = 1 $


(viii) $ {a^{-m} } = { 1 \over {a^m}} $

Example : $ {5^{-3} } = { 1 \over {5^3}}$


Number Systems ⇒⇒ Exercise 1.5

Question 1 (i)

Find:
(i) $ {64^{1 \over 2} } $


Solution :


Given : $ {64^{1 \over 2} } $


Now, on simplifying it, we will get prime factors of 64 = 2 × 2 × 2 × 2 × 2 × 2


Hence, $$({ 2 × 2 × 2 × 2 × 2 × 2 })^{1 \over 2} $$

$$⇒ ({ 2^6})^{1 \over 2} $$

(According to Laws of Exponents = ${(a^m )^n } = a^{m × n}$)


$$⇒ (2)^{ 6 ×{ 1 \over 2}} $$

$$⇒ 2^3 $$

$$⇒ 8 $$


Question 1 (ii)

Find:
(ii) $ {32^{1 \over 5} } $


Solution :


Given : $ {32^{1 \over 5} } $


Now, on simplifying it, we will get prime factors of 32 = 2 × 2 × 2 × 2 × 2

Hence, $$({ 2 × 2 × 2 × 2 × 2 })^{1 \over 5} $$

$$⇒ ({ 2^5})^{1 \over 5} $$

(According to Laws of Exponents = ${(a^m )^n } = a^{m × n}$ )


$$⇒ (2)^{ 5 ×{ 1 \over 5}} $$

$$⇒ 2^1 $$

$$⇒ 2 $$


Question 1 (iii)

Find:
(iii) $ {125^{1 \over 3} } $


Solution :


Given : $ {125^{1 \over 3} } $


Now, on simplifying it, we will get prime factors of 125 = 5 × 5 × 5

Hence, $$({ 5 × 5 × 5 })^{1 \over 3} $$

$$⇒ ({ 5^3})^{1 \over 3} $$

(According to Laws of Exponents = ${(a^m )^n } = a^{m × n}$)


$$⇒ (5)^{ 3 ×{ 1 \over 3}} $$

$$⇒ 5^1 $$

$$⇒ 5 $$


Question 2 (i)

Find:
(i) $ {9^{3 \over 2} } $


Solution :


Given : $ {9^{3 \over 2} } $


Now, on simplifying it, we will get prime factors of 9 = 3 × 3

Hence, $$({ 3 × 3})^{3 \over 2} $$

$$⇒ ({ 3^2})^{3 \over 2} $$

(According to Laws of Exponents = ${(a^m )^n } = a^{m × n}$)


$$⇒ (3)^{ 2 ×{ 3 \over 2}} $$

$$⇒ 3^3 $$

$$⇒ 3 × 3 × 3 = 27 $$


Question 2 (ii)

Find:
(ii) $ {32^{2 \over 5} } $


Solution :


Given : $ {32^{2 \over 5} } $


Now, on simplifying it, we will get prime factors of 32 = 2 × 2 × 2 × 2 × 2

Hence, $$({ 2 × 2 × 2 × 2 × 2 })^{2 \over 5} $$

$$⇒ ({ 2^5})^{2 \over 5} $$

(According to Laws of Exponents = ${(a^m )^n } = a^{m × n}$)


$$⇒ (2)^{ 5 ×{ 2 \over 5}} $$

$$⇒ 2^2 $$

$$⇒ 2 × 2 $$

$$⇒ 4 $$


Question 2 (iii)

Find:
(iii) $ {16^{3 \over 4} } $


Solution :


Given : $ {16^{3 \over 4} } $


Now, on simplifying it, we will get prime factors of 16 = 2 × 2 × 2 × 2

Hence, $$({ 2 × 2 × 2 × 2 })^{3 \over 4} $$

$$⇒ ({ 2^4})^{3 \over 4} $$

(According to Laws of Exponents = ${(a^m )^n } = a^{m × n}$)


$$⇒ (2)^{ 4 ×{ 3 \over 4}} $$

$$⇒ 2^3 $$

$$⇒ 2 × 2 × 2 $$

$$⇒ 8 $$


Question 2 (iv)

Find:
(iv) $ {125^{-1 \over 3} } $


Solution :


Given : $ {125^{-1 \over 3} } $


Now, on simplifying it, we will get prime factors of 125 = 5 × 5 × 5

Hence, $$({ 5 × 5 × 5 })^{-1 \over 3} $$

$$⇒ ({ 5^3})^{-1 \over 3} $$

(According to Laws of Exponents = ${(a^m )^n } = a^{m × n}$)


$$⇒ (5)^{ 3 ×{ -1 \over 3}} $$

$$⇒ 5^{-1} $$

( Now, According to Laws of Exponents = ${a^{-m} } = { 1 \over {a^m}}$)

$$⇒ { 1 \over 5}$$


Question 3 (i)

Find:
(i) $ {2^{2 \over 3} } . {2^{1 \over 5} }$


Solution :


Given : $ {2^{2 \over 3} } . {2^{1 \over 5} }$


Hence, $$( {2^{2 \over 3} } × {2^{1 \over 5} }) $$

(According to Laws of Exponents = $ {a^m × a^n } = a^{m + n}$)


$$⇒ (2)^{{2 \over 3} +{1 \over 5}} $$

$$⇒ (2)^{{10 + 3} \over 15} $$

$$⇒ (2)^{13 \over 15} $$


Question 3 (ii)

Find:
(ii) $ { ({1 \over {3^3}})^7 }$


Solution :


Given : $ { ({1 \over {3^3}})^7 }$


( According to Laws of Exponents = ${a^{-m} } = { 1 \over {a^m}}$ )

$$⇒ { ({3^{-3}})^7 } $$


( Now, According to Laws of Exponents = ${(a^m )^n } = a^{m × n}$)

$$⇒ (3)^{{-3} × 7} $$

$$⇒ (3)^{-21} $$


Question 3 (iii)

Find:
(iii) $ {{11^ {1 \over 2}} \over {{11^ {1 \over 4}}}} $


Solution :


Given : $ {{11^ {1 \over 2}} \over {{11^ {1 \over 4}}}} $


( According to Laws of Exponents = $ {a^m \over { a^n} } = a^{m - n}$)

$$⇒ {(11)^{{1 \over 2}- {1 \over 4}}} $$

$$⇒ {(11)^{{2 - 1} \over 4}} $$

$$⇒ {11^ {1 \over 4}} $$


Question 3 (iv)

Find:
(iv) $ {7^{1 \over 2} } . {8^{1 \over 2} }$


Solution :


Given : $ {7^{1 \over 2} } . {8^{1 \over 2} }$


( According to Laws of Exponents = $ {a^m × b^m } = {(ab)^m} $)

$$⇒ {(7 × 8)^{1 \over 2} } $$

$$⇒ {(56)^{1 \over 2} } $$

$$⇒ {(56)^{1 \over 2} } $$


Syllabus for class 10

Advanced courses and exam preparation.

Previous Year Paper

Advanced courses and exam preparation.

Mock Test

Explore programming, data science, and AI.